La edición del genoma es la inserción, eliminación o el reemplazo de secuencias específicas de ADN dentro de un genoma de un organismo o una célula. Generalmente esta técnica se realiza en un laboratorio usando enzimas de diseño llamadas nucleasas. La edición genómica no es un concepto nuevo y CRISPR/Cas9 (el más famoso hoy en día) no fue el primer método de edición de genes.

Antes de CRISPR/Cas9, se descubrieron otros métodos de edición de genes, entre los que destacan:

  • Las meganucleasas
  • Las nucleasas de dedos de zinc (ZFN),
  • Las nucleasas efectoras tipo activador de transcripción, del inglés Transcription Activator-Like Effector Nuclease (TALEN)

 Major-genome-editing-technologies.png

Las meganucleasas son enzimas de restricción diseñadas que reconocen largos tramos de secuencias de ADN de 14 a 40 pb.

ZFN y TALEN están basadas en proteínas constituidas por una región de catalítica de escisión del ADN y una región guía de reconocimiento del gen diana que se quiere manipular. Las TALENs son más fáciles de diseñar que las ZFN. No obstante, ambas resultan difíciles de administrar en las células debido a su tamaño, complicando la capacidad de generar múltiples cambios genéticos simultáneos.

Propiedades de las herramientas de edición del genoma

Las cuatro familias de editores de genes (año de descubrimiento)

Meganucleasas (1985)

Nucleasas de dedos de zinc (ZFN) (2003)

TALENs (2010)

CRISPR/Cas (2012)

Numero de proteinas

1

2

2

1 + 1 RNA

Producción

Difícil

No es muy fácil

Fácil

Muy fácil

Costo de producción

50.000 Euros

5.000 Euros

1.000 Euros

10 Euros

Tiempo necesario para un experimento.

Meses

Meses

Semanas

Días

Son comunes a estos métodos tres pasos básicos, que incluyen

  1. mecanismos para la entrada de herramientas genéticas en la célula y más tarde en el núcleo;
  2. alterar la transcripción génica y la función de procesamiento posterior;
  3. y, finalmente, la producción final en forma de un producto proteico suprimido, sobreexpresado o simplemente un producto alterado.

 CRISPR-edicin-de-ADN.gif

crispr-cas9-edicion-genetica.jpg

 El sistema CRISPR-Cas se basa en dos componentes principales: un ARN guía (ARNg) y una nucleasa asociada a CRISPR (Cas).

  1. La guía de ARN (ARNg) es una secuencia de ARN específica que reconoce la región de ADN objetivo de interés y dirige la nucleasa Cas allí para su edición. El ARNg se compone de dos partes:
    1. CRISPR ARN (crARN), una secuencia de nucleótidos 17-20 complementaria al ADN objetivo,
    2. y un tracrARN , que sirve como un andamiaje de unión para la nucleasa Cas.
  2. La proteína asociada a CRISPR (Cas9) es una endonucleasa no específica. Se dirige al locus de ADN específico mediante un ARNg, donde se rompe una cadena doble.

Existen varias versiones de nucleasas Cas aisladas de diferentes bacterias. La más utilizada es la nucleasa Cas9 de Streptococcus pyogenes.

sgRNA (single guide) es una abreviatura de "ARN de guía única". Como su nombre lo indica, un sgRNA es una molécula de ARN única que contiene tanto la secuencia corta de crARN de diseño personalizado fusionada con la secuencia de tracrRNA de andamio. La sgRNA puede generarse sintéticamente o hacerse in vitro o in vivo a partir de una plantilla de ADN.

  • tracrRNA es como una especie de andamio de ARN, que mantiene el complejo en forma activa y que recluta el rcARN a la molécula cas9

Si bien los crRNA y los tracrRNA existen como dos moléculas de ARN separadas en la naturaleza, las sgRNA se han convertido en el formato más popular para los ARN de guía CRISPR para los investigadores, por lo que los términos sgRNA y gRNA a menudo se usan con el mismo significado en la comunidad CRISPR en estos días.

REPARACIÓN DE LA RUPTURA DE LAS DOS CADENAS DEL ADN

dsDNA-break-and-repair.png

  1. En ausencia de una plantilla de ADN homóloga, la ruptura de las dos cadenas del ADN (DSB) pueden repararse mediante una unión final no homóloga (NHEJ), que es un proceso propenso a errores que causa pequeñas inserciones o deleciones.
  2. En presencia de una plantilla de reparación sintética, los DSB pueden repararse mediante Reparación Dirigida por Homología (HDR), que permite la introducción de cualquier cambio deseado en el par de bases.

APLICACIONES REALES

  • En investigación básica para generar modelos de enfermedades, así como para estudiar nuevas dianas y fármacos.
  • En agricultura, podemos obtener plantas más resistentes a las enfermedades, a la salinidad y al estrés hídrico, y por tanto más adaptables al cambio climático; también pueden ser más productivas.

industrias-alimentaria-y-agrcola.png

Izquierda: Terry Huang y Chloe Gui de Aranex Biotech con plantas de maní hipoalergénico editado con CRISPR [https://goo.gl/23AlkM] | Centro: Dupont está produciendo maíz tolerante a sequía y trigo “híbrido” de mayor rendimiento con CRISPR [http://goo.gl/0fgVsV] | Derecha: Brian Staskawicz y Michael Gomez junto a plantas de yuca editadas con CRISPR para resistir el virus del estriado marrón [http://goo.gl/fU18U3].

  • En ganadería, podemos tener animales más resistentes a enfermedades como la tuberculosis o la gripe aviar, o ejemplares más musculosos.
  • En salud, antídotos contra medusas, mosquitos que no transmiten la malaria o mosquitos estériles.

LIMITACIONES

No es un secreto que la “edición” genética CRISPR a veces produce cambios no intencionales en el genoma; es decir, modificaciones que no habían sido planeadas por los científicos.

  • La mayor limitación de CRISPR es que no es cien por ciento eficiente.

Según la revisión de 2014 publicado en Science por Doudna y Charpentier, en un estudio realizado en arroz, la edición de genes se produjo en casi el 50% de las células que recibieron el complejo ARN/Cas9.

También existe el fenómeno de los efectos fuera del objetivo”, en los que el ADN se corta en sitios distintos de la secuencia diana prevista. Esto puede conducir a la introducción de mutaciones no deseadas. Además, incluso cuando el sistema corta la secuencia diana, existe la posibilidad de no obtener una edición precisa.

El estudio realizado por Kellie Schaefer y cols, de la Universidad de Stanford, en ratones rd1 ciegos corrigiendo una mutación en el gen Pde6b utilizando terapia génica CRISPR-Cas9,  descubrió que las secuencias de ADN de dos ratones curados de ceguera (F03 y F05), habían sido afectados por más de 1,500 pequeñas mutaciones, conocidas como cambios de un solo nucleótido, y por más de 100 deleciones e inserciones más grandes en el código genético, en el que se cambia una sección más grande del ADN.

No está claro si el diseño mejorado de sgRNA o el uso de Cas9 de alta fidelidad pueden reducir las mutaciones fuera del objetivo, o si in vivo fuera de los objetivos son un problema general de cualquier sgRNA. Nuestro estudio atribuye la responsabilidad a los investigadores a analizar cuidadosamente su específica gRNA y Cas9 de mutaciones fuera de objetivo. Es posible que se necesite más trabajo para aumentar la fidelidad de CRISPR-Cas9 con respecto a la generación de mutaciones fuera del objetivo antes de que la plataforma CRISPR pueda usarse sin riesgo, especialmente en el entorno clínico. Los estudios futuros que empleen nuevos métodos y reactivos CRISPR deberían considerar el uso de la secuenciación del genoma completo (WGS)  para determinar la presencia de mutaciones fuera del objetivo in vivo.

A pesar del tiempo que se ha dedicado a afinar el proceso, estos investigadores han demostrado los efectos secundarios no planificados.

La inserción, liberación o entrega segura y efectiva de los componentes CRISPR / Cas en el núcleo de las células afectadas es esencial para la edición terapéutica de genes. Estos componentes pueden administrarse en varios formatos, como ADN de plásmido (pDNA), vectores virales o complejos ribonucleares.

En el caso ideal, el sistema de entrega debe abordar las limitaciones actuales de la edición de genes CRISPR, que son:

  1. la falta de dirigirse a tejidos o células específicos,
  2. la incapacidad de ingresar a las células,
  3. la activación del sistema inmune, 
  4. eventos fuera del objetivo

ar-2019-00106q_0003.jpg

La combinación de la proteína Cas y el ARNg puede administrarse como un plásmido único, vector (es) viral o como complejos RNP preformados que solo necesitan localizarse en el núcleo.

Una plantilla de HDR para reparación específica finalmente puede administrarse como:

  • ADN de cadena sencilla (adecuado para correcciones mutacionales pequeñas)
  • o como plásmidos de ADN grandes (adaptación adecuada de secuencias grandes o genes completos).

Las secuencias de plantilla HDR contienen el gen corregido y dos brazos de homología flanqueantes (HA) para mejorar la afinidad alrededor del sitio del DSB. Después de la inducción de un DSB, las proteínas que pertenecen a la maquinaria de reparación del ADN reconocen los extremos rotos del ADN, lo que conduce a la activación de la reparación del ADN.

ar-2019-00106q_0001.jpg

Resumen esquemático de los conceptos de endonucleasa CRISPR / Cas.

(A) Diferentes formatos en los que las plantillas de proteínas Cas, gRNA y HDR pueden usarse para lograr la edición de genes.

(B) El complejo RNP activo actúa escindiendo 2 cadenas de ADN en el sitio objetivo de sgRNA en presencia de una secuencia PAM (rojo).

Se pueden producir tres mecanismos de reparación:

(1) NHEJ, que puede inducir la desactivación de genes mediante la formación aleatoria de indel;

(2) HDR usando una plantilla de cadena única o monocaterania (ssDNA) 

(3) doble cadena (dsDNA), respectivamente

El avance de la edición génica - CRISPR/Cas9 - ofrece la promesa de transformar el modo en que el mundo produce comida y combustibles, protege el medioambiente y trata las enfermedades.

Empero también contiene el potencial grave de un uso malévolo y destructivo (de amenaza biológica)

Análisis DAFO: CRISPR/Cas9 y bioseguridad.

FORTALEZAS

  • Coste de la biotecnología
  • Sencillez de la técnica
  • Rapidez de la técnica
  • Eficacia de la técnica
  • Difusión y transmisión del conocimiento científico (biodata)
  • Conocimiento del genoma
  • Interés económico

DEBILIDADES

  • Investigaciones opacas
  • Errores imprevisibles en la edición génica
  • Desconocimiento de la sociedad
  • Desconocimiento en la comunidad de Inteligencia (conjunto de organizaciones dedicadas a labores de Información e Inteligencia, dependientes de los Gobiernos)

OPORTUNIDADES

  • Creación de antibióticos y antivíricos específicos
  • Cura de enfermedades raras y genéticas
  • Mejora de la salud y del medio ambiente
  • Monitorización de datos mundiales epidemiológicos y de salud
  • Colaboración internacional de los servicios de Inteligencia
  • Difusión de la cultura de bioseguridad

AMENAZAS

  • Las propias fortalezas
  • Empoderamiento de las empresas biotecnológicas
  • Biotecnología fuera de control
  • Catástrofes ecológicas
  • Bioterrorismo
  • Armas biológicas de distracción, disrupción y destrucción masiva

 Problemas bioéticos y técnicas de edición del genoma

Las herramientas de edición del genoma son poderosas en términos de su potencial no solo para traer la revolución biotecnológica en el campo del desarrollo de cultivos y la patología humana, sino que también, en las manos equivocadas, conducen al abuso y al mal uso de múltiples maneras, incluida la manipulación de la genética de la línea germinal.

Muchos expertos han planteado preocupaciones bioéticas genuinas.

Si bien el tiempo será el juez real de estas tecnologías como una bendición o una ruina, los métodos pueden afectar a la raza humana probablemente de la manera más nuclear, y nuestra raza humana entrante puede ser víctima de formas que aún no entendemos.

Las principales preocupaciones, aparte de la mutación ilegal de la línea germinal, incluyen:

  • la moralidad,
  • la eugenesia que ayuda al más apto para sobrevivir,
  • los debates clínicos en curso sobre el consentimiento informado,
  • el debate religioso,
  • el posible surgimiento de clones,
  • bebés de diseño y posiblemente superhumanos.
  • Además, la literatura actual también refiere la posibilidad de editar el genoma como un arma de guerra futura.

Si bien la búsqueda de un bebé sano y el derecho a la mejor opción de tratamiento posible se han reconocido en muchas sociedades, la revolución biotecnológica parece inminente e innegable. Por lo tanto, la necesidad apremiante exige una traducción armoniosa y regulada de los aspectos necesarios de las tecnologías relacionadas con la edición del genoma para la medicina molecular y otras industrias no alimentarias de cultivos y alimentos.

Esto necesitará consenso en la opinión pública, debates entre expertos, participación de biotecnólogos, opiniones de expertos en bioética, marcos regulatorios dentro de las legislaciones, y directrices con supervisiones finales para la aplicación limitada finalmente permitida.

CONCLUSIONES

LÍMITES ACTUALES

  • la falta de dirigirse a tejidos o células específicos,
  • la incapacidad de ingresar a las células,
  • la activación del sistema inmune y
  • eventos fuera del objetivo

APLICACIONES REALES

  • En investigación básica para generar modelos de enfermedades, así como para estudiar nuevas dianas y fármacos.
  • En agricultura, podemos obtener plantas más resistentes a las enfermedades, a la salinidad y al estrés hídrico, y por tanto más adaptables al cambio climático; también pueden ser más productivas.
  • En ganadería, podemos tener animales más resistentes a enfermedades como la tuberculosis o la gripe aviar, o ejemplares más musculosos.
  • En salud, antídotos contra medusas, mosquitos que no transmiten la malaria o mosquitos estériles.

REFERENCIAS

Komor AC, Badran AH, Liu DR. Editing the Genome Without Double-Stranded DNA Breaks. ACS Chem. Biol. 2018; 13: 383-388.

Schaefer KA, Wu WH, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB. Unexpected mutations after CRISPR-Cas9 editing in vivo. Nat Methods. 2017;14:547-548.

Wilbie D, Walther J, Mastrobattista E. Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing. Acc Chem Res. 2019;52:1555-1564.

Brokowski C, Adli M. CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. J Mol Biol. 2019;431:88-101

 

PROF. DR. FERNANDO GALAN